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M/G/I with Exceptional Service and Arrival Ratt

by

Martin Krakowski

Abstract

-9 The model M/G/1 is modified by i providing the pioneer customer, i.e. the customer who

terminates an idle period (and initiates a busy period) with exceptional service; and () by allowing an

exceptional arrival rate during the idle period. The regimen is FCFS and the server idles only when

customers are absent. V4 derive~omni-equations for the delay, for the backlog, and for the queue size

as found by real or virtual arrivals. % relatethese processes to the regular M/G/1 as convolutions of
t

the delay in M/G/l with modifying variables in the model treated. The queue size is derived from the

delay by applying the Poisson operator.

This paper extends the results of P.D Welch (1964) who allowed exceptional service but not

exceptional arrival rate, and who did not discuss composition relations. His solutions used Laplace

transforms and generating functions. W.-be4ew that the current treatment is simpler and more

suitable for further generalizations. Introducing the exceptional arrival rate forces us to distinguish

between the perception of the observer and of the customer source. A -
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Notation

o= arrival rate when server idles

A= arrival rate when server serves

y service time for a -pioneer" (customer who initiates a busy period)

x= service time for non-pioneers, or -followers"

z=residual service time of z or, briefly, the residue of z

p = AEx=Ap& po=UY

B=backlog or unfinished work

w = overall delay as perceived by the customer source

w.= positive delay, i e. delay of a follower; a pioneer's delay = 0

u= clearance time of the system (=virtual waiting time in our model)

u= clearance time of the system, provided the server works

n = queue size at a random instant (or viewed continuously)

n. =queue size at a random instant provided the server works

qd=queue size left behind by a departing customer who enters the service station

qa=queue size found by an arriving customer

qd = queue size left behind by a departing follower who enters the queue

qta =queue size found by a follower (i.e.found by a customer while server works

N =system size as seen by a continuous (or Poissonian) observer

Q=system size found by a newcomer (or left behind by a served customer)

Q0 =fraction of newcomers who find the server idle

Q. =fraction of newcomers who find the server busy

P0 =Pr(N=0) P.= Pr(N>0) = Pr(server serves) = 1- P0

A free copy of a random variable z is a random variable having the same distribution as z ahid

independent of any other variables within the same argument. Different free copies of the same
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variable are usually designated by the same symbol if they occur in different arguments: this causes no

confusion.

Omni- Transform

Definition 1 The omni-tran-form of the random variable A is the expectation of an arbitrary

function of A: EVk(A). The arbitrariness of W is limited only by the requirement that Ev(A) and '(

exist. When using this definition we usually apply the so-called omni-convention (see below).

Definition 2 The omni-transform of the random variable A is an arbitrary functional of A.

It can be shown that the two definitions are essentially equivalent since under wide enough conditions a

functional of A can be represented in the form EP(A) for some ?i. Among the advantages of Definition

2 is that we need not know the function whose expectation is the functional of interest and we can thus

easier specialize v (A). Thus, if we need Pr(A<t) we need not write w,(A)=EH(t-A) where

H(t-A)=I if t< A and =0 otherwise; we simply write O(A)=Pr(A<t). Another advantage of

Definition 2 is that no need arises for the omni-convention (see below). But perhaps Definition 1 is

somewhat simpler when balancing b(A). Since the omni-equations are typographically identical for

both definitions (when the omni-convention is used with Definition 1) the reader may choose either.

Omni-Convention Omni-equations are easily told by sight. Hence Et(A) can be replaced in print by

?4(A) and the operator E is retained mentally; this is the omni-convention. Definition 2 has no need for

the omni-convention. Omni-equations look the same under both definitions if the omni-convention goes

with Definition 1. One can even jockey between the two definitions for didactic or esthetic reasons.
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Section 1. The Balance of O(B) in G/G/1 with Exceptional Service

It is of interest to see how far we can get within a modified GIG'!, in which the pioneer customer

receives exceptional service, when we apply the n, cho- of omni-equations. (The generality of the

arrival stream includes the possibility of exceptional rate for the pioneers.) Once we reach a barrier to

further progress we will see clearer why that barrier may be lifted by a fundamental property of a

steady Poissonian source, namely that true arrivals see the same picture. -,v hastically. as does a

continuous observer or a Poissonian observer.

In our model the backlog B manifests itself to new arrivals as their delay w: we can say that

"w=B conditioned upon a customer just to arrive" and it manifests itself to a continuous observer as

the virtual delay u (or clearance time in our mode!), An observer who samples the system at instants

generated by an independent Poisson source of steady intensity ,s equivalent to a continuous observer.

Clear intuitively that Poissonzan sampling ghould be unbiased, this was also treated analytically ( Wolff

1982). Such an observer will be tersely referred to as a random observer and his observations as

random observations. We can say that "u = B conditioned upon the observation instant being

random." The process B is thus a superposition of the point process w and the continuous (almost

everywhere) process u.

Under steady-state conditions B is a balanced process, which means that E(dB)=O during a

random dt. But i,,(B), an arbitrary function of B. is also balanced since we also have d(B) = 0

over any random time interrval dt.

We shall now derive the balance equation for O'(B). Balancing an arbitrary function of a

process, rather than the process itself. is the essence of the omni- method. The expected changes in

w(B) derive from two causes:

(a) While the server works the backlog B is being worked off continuously at the rate
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du-=du,=-dt; and du=0 while the server idles; thus the expected change in '(B) due to the work-off

is, using the omni-convention (i.e. by mentally taking the expectation of each side of the equation):

d,(B) =-dtP, '(u,) (1.1)

where P.= Pr(server works) = fraction of time as seen by a continuous observer. Of course.

Po+Pl=l.

(b) New arrivals cause upward jumps in B. A pioneer causes a jump from 0 to y, and a follower

causes a jump from w. to w,-rx. Thus, Edw(B) caused by new arrivals during dt is

de(B) = dt.XQ 0[0(y)- v(0)J + dtAQ,(Vk(w,+x)-p(w.)] (1.2)

where A=global frequency of arrivals; Q0 =fraction of customers who find the server idle; and

Q.=fraction of customers who find the server busy. Note that the Q-weights refer to the experience of

customers, while the P-weights refer to the experience of an observer. In a model with a steady

Poissonian source of customers a continuous (or random) observer sees, statistically, what the arrivals

see so that then V(u)=(w). But this is not generally the case for a non-Poissonian source (even for

a piecewise Poissnian source as in our model) where customers may find different probabilities than do

observers; thus ,(u) * 0(w).

From (1.1) and (1.2) we get the balance equation for the backlog in G/G/I:

P,' (u,) = AQ0 [ ,(y)-P(0)] + AQ,[V(w,+x)-z,(w*)] (1.3)

Equation (1.3) can be integrated, i.e. brought into a form free of derivatives. It is easy to show (cf.

Krakowski September 1984 and 1985) that

"'(z) - (0) = T''() (1.4)

for any positive random variable z which is interpreted as a renewal process; i is the residual time of z,

or simply its residue. Equation (1.4) plays a key role in the treatment of queues when integrating
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omni-equations. In fact, equation (1.4) helps to exploit the tew of a stngle-serber queue as a renewal

station modified by gaps in service. It follows from (1.3) and (1.4) that

P. ,'(u. )= AQ0y t/( ) +AQ. )'(w. + ) ( 1.5) 1

Since w ( ) is also a general function of its argument we can replace in (1.5) each W' by t,, - we

call this procedure typographical integration - thus obtaining for G/G/1

P(u.)= AQ 0 YO(5) + AQ.Rci(w.+ k) (1.6)

From (1.6) we get, upon setting O(A)=I, A(Q 0 y+Q. )=I which along with Qo+Q.=I yields Q 0

and Q* in terms of A and y and R.

Equation (1.6) can be also read in the following manner: The random variable u* is a mixture of

and w*+k with weights AQ 0 y and AQR. Note that w* and i are independent, as follows

from the derivation of (1.6); unless otherwise indicated, each variable in each argument of an omni-

equation is a free copy of its generic prototype: it is distributed like this prototype and is independent

of any other variable within the argument.

The unknown processes in (1.6) are u. and w.. The variables y and x, and hence their residues

and R, are known. It appears that the theory of the delay in G/G/1 and in some of its variants

reduces to relating w. to u*. In order to sc!ve (1.5) for both w. and u, we need another equation in

these variables, wishfully an omni-equation. However, there is no assurance that such an omni-

equation exists for all or most models with general input. If it does exist its form is likely to be

complex. (No general equation relates the Laplace Transforms of u. and w., which equation might then

be transposed into an equivalent omni-equation.) A problem of applied and methodological interest is,

for what models can w. and u. be related by means of omni-equations alone?

When the arrivals are Poissonian, at least during the busy period, such relations between u. and

w. do exist and can be simple. From these, in turn, relations between u and w can be derived.
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This is the subject of Section 2.
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Section 2. Balancing V,(B) in M/G/I with Exceptional Service and Arrival Rates

Like for G/G/I we find it useful to start with the balance of i,,(B) as a stepping stone towards the

analysis of the delay w. Moreover, the backlog is of economic interest when some costs. e.g. inventory

costs, depend on B.

Let f 0 1=frequency of transitions of system size from N=O to N=I. Clearly, with A=global arrival

rate, and with a and A being the Poissonian intensities during the server's idle and busy periods,

we have

A= oaP 0 + AP. = AQ 0 + AQ. ; Po+P.=1 and Q 0 +Q.=I (2.1a)

f01 = 'P 0 = AQ0  (2.1b)

From (2.1a) and (2.1b) we get

AP. = AQ. (2.1c)

Note now that for our current variant of M/G/I we have the key property

= I(w.) (2.2)

The continuous observer who sees u. is equivalent to a random observer of u. who takes readings with

frequency A and who must see what true arrivals see. We have v(Poissonian u.) = V)(continuous u.)

in a self-explaining way.

From (1.6), (2.1.b). (2.1c) and (2.2) we get

P.?.,(w.) = a, P0 t,(i 0 ) + ARP.w(w.+ i) (2.3)

an ormni-equation with w. as its only unknkown random variable. Dividing each term in (2.3) by

P. and defining

P0 
= CJV and p = AR

%e obtain
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= (PoPo/P.w(y) + p(W.+ i) 12.-)

With v( )=1 in (2.4) we find that

POP = - 12.5

and

t,(w.)=(1-p)(0')+ p(w. +)J (2.6)

Note that the differential equation (1.3) includes in its arguments y and x, the service durations,

whereas the integrated equation (2.6) includes in their stead their residues. This is a characteristic

feature of integrating a differential omni-equation in the context of queueing analysis: Residual service

times tend to go with integrated equations. This explains why it has been repeatedly observed that the

formal structure of M/G/1 and its variants is simplified when expressed in terms of : rather than x.

From (2.5) and P 0 + P. = 1 we obtain

P- = and P. = P (2.7)
I-P+ Po l-p+ Po

and from (2.7) and (2.1) we find A and Q0 and Q..

We find the successive moments of w, by setting w(A)=A k in (2.6) and get

Ew. = Ey + I Ek (2.8)

With O(A) = e - sA in (2.6) we find the Laplace Transform of w.:

Ee Sw. (1 -p)E 5 "Ee - sw - = 1pEs (2.9)

1 -pEe-sx

We have often found that the easiest way to derive the Laplace Transform of a random process is via

an omni-equation. And we find an integral equation for the cumulative distribution function of w.

by setting t-(A)=Pr(A<t) in (2.6). thus obtaining the convolution equation
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Pr(w, <t)=(1 -p)Pr(S <t) +pPr(w, +k <t) (2.10)

One can even find the queue size by specializing the function or functional vt(A); cf. Section 5.

The reader may have noticed already that (1.6) implies (2.6) when V(u,)=t (w,) and

AQo=aP0 and AQ,=AP, but in order to develop the M/G/I model independently of G/G/I we

started again with the basics.
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Section 3. A Composition Theorem for P(w.)

The omni-equation for the delay w in a regular M/G/1 is, in integrated form (cf. Krakowski 1986),

tv(w) = (1-p)(O) + PW(w+k) (3.1)
R R

The R beneath the w is a reminder that this w pertains to the regular M/G/I

Theorem 1 Suppose that certain positive random variables Z and g satisfy the omn:-equatzon

t,(Z) = (1-p)Ob(g) + pO(Z+') (3.2)

in which p and i are as in (3.1). Then the following composition holds

I(Z) = t(pw+g) (3.3)

which says that Z is distributed like the sum of the generic variables w and g.
R

Proof Shifting (3.1) by g we obtain

0,(w+g)= (1-p)(g) + ptp(w+i+g) (3.4)
R R

From (3.2) and (3.4) we get

V(Z)-pv,(z+i)= V(w+g) - p0(w+i+g) (3.5)

R R

Defining

Q(Z) = (Z) - pV4(Z+k) (3.6)

we S: from (3.5)

O(Z) = -(g+R) (3.7)

which, 6 being a general function, is equivalent to (3. 3) ; this completes the proof.

Among the models for which (3.3) holds is the multiple vacation model in whicvh Z=w and g

v, a vacation period. A more general problem than the simple composition in terms of w is to express
R

an unknown process, e.g. w or w. or B or B,, in terms of other already known processes, not

perforce the delay in M/G/I and not perforce simple convolutions.
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From (3.2), (3.7) and (2.6) we have the composition

Equation (3.8) solves the problem of deriving the delay in our model in a simple and versatile wa%.

We are now ready to derive the omni-equations for the delay w and for the virtual delay u.
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Section 4 The Delay in M/G/1 with Exceptional Service and Frequency of Arrivals

The general delay w is a mixture of two delays, pioneers' and followers', with weights Qo and Q.

as perceived by the source of customers. The delay w thus clearly satisfies the omni-identity

c(w) = Q0 0I(O) + Q;(w.) (4.1)

Hence, taking account of (3.8), i.e. tk(w.) = (w +k), we have
R

v~)= Q0 0(O) + Q.4'(w+5r) (4.2)
R

which is a valid solution for w since all coefficients and arguments on the right-hand side of the

equation are known; Q0 and Q. are given in (2.1).

The steady or Poissonian observer will write an omni-equation for the virtual delay u as a

mixture of pioneers' and followers' components, namely

,(U) = P0 10(0) + P.(u.) (4.3)

and since in our model ((w.) = (u.) we can also write, aided by (3.8),

'(w) = P 0 (O) + P.-(w+5) (4.4)
R

Since in the regular in/G/1 i(u) = v(w) we can also write (4.4) as
R R

4(u) = Pov(O) + P.O(u+ ') (4.4a)
R

It is seen thus that the omni-equations for w and for u, i.e. equations (4.2) and (4.4), differ only in

their weights for finding the server idle or busy.

If u=A then P 0 =Q 0 and P.=Q. and we have V'(u) = V'(w), in addition to T (u.)- V)(w.),

since the steady (or Poissonian) observer gets the same statistical picture as does the source of

customers, both pioneers and followers. This is M/G/1 with exceptional service but uniform arrival

intensity, dealt with by Welch.

In some other variants of M/G/1 the property that 0(u.) " 4(w.), without ;O(u)=4(w), has
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also provided the key to the treatment of the queue size and the delay under steady-state conditions.

This was the case, for example, in the quorum problem, alias Heyman's N-Policy (Cf. Krakowski, July

1986 and November 1986.) Indeed, when analysing a variant of M/G/1 it is worth considering under

what conditions observers and arrivals see the same statistical picture.
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Section 5 Poisson Operator and Queue Size

Let us define the following function of the time interval z:

#,(z)= number of events begot by a Poisson source of intensity 3 during z.

We refer to #. as the Poisson operator of intensity 3, acting on z. We assume that the Poisson source

is independent of z and of any process entering the model unless said otherwise. Where no confusion

threatens we may omit the subscript 3 and the qualifier "of intensity .3," thus writing #z in place of

#'6(z).

The distribution of #,3(z) is well known (cf. e.g. Gross and Harris 1985):

Pr(z=j) = E e (5.1)

The Poisson operator has two important operational properties.

(1) #(a+b)=#a+#b if the intervals a and b are independent, in particular if they do not

overlap. In omni-notation

u,(#(a+b))=Vi(#a+ #b) (5.2)

(2) If z is a mixture of the random intervals a and b with respective weights a and I-a then #z

is a like mixture of #a and #b. In omni-notation

¢(z) =a (a)+(1 -a)(b) =:. 0(#z)=av(#a)+(1-W)'(#b) (5.3)

It follows from the above two properties that each integral omni-equation with constant coeficients

stays valid if each of its arguments is subjected to a Poisson operator of the same intensity. We can

think of the Poisson operator as a random clock, a Poisson clock, which assigns a random discrete

L measure to any time interval by means of the probabilities (5.1).

The interpretation of the resulting omni-equation has to proceed most carefully. In all our
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applications the Poisson operator will have the intensity of the customer source for the entire process

or for the busy period. This choice often leads to omni-equations with arguments which are free copies

of important discrete processes. such as n or n.

Of course, in general u,(#(z 1+z,))*u(#z1)+ (#z 2 ), even if z 1 and z, do not overlap.

Consider now the omni-equation for the regular M/G/1, i.e. when a A and iv(y)=-'(x), and

by implication Q0 =P0,

M/G/1 0b(w) = (l-p)'(0) + pO(w+i) (5.4)

Let now #=#, and let O(A)=o(#A) for any argument A in (5.4).

Equation (5.4) becomes

M/G/1 0(#w) = (I-p)O(#O) + t(#(w+i)) #=#A (5.5)

and since #(w+i) =#w+#x equation (5.5) becomes

M/G/1 0(#w) = (1-p)O(#O) + 0(#w+#k) #=#A (5.6)

It is clear that in M/G/1 #w has the same distribution as qd, size of queue left behind by an

entrant into the service station; hence ?(#w)=¢/(qd). The distribution of qd is like that of n. the

number of customers seen by a random observer and which in turn is distributed like qa, the number

of customers found by a newcomer. Thus (cf. Krakowski 1974)

M/G/1 (#w) = V(qd)=u(qa)=V,(n) (5.7)

Clearly, #0=0 with probability 1. And finally, #i - number of Poisson events during x is

assumed known along with x.

We therefore find that (5.5) becomes
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%/G/[ v(n)=(1-p)v,(0) + pv'(n +h) where h=#i (5.8)

The power of the Poisson operator to recycle omni-equations for the delay into omni-equations for

the queue size is not widely known. In fact, it may be new.

Note It can he shown that (cf. Appendix) with #x = k and with #i=h we have the omni-

equation

(k)-() p[(h+)-(h)] (5.9)

thus expressing the functionals of h in term of the functionals of k which have been more often

dealt with in the literature. (Cf. e.g. the k-matrix in Gross and Harris.)

We now supplement Theorem 1 of Section 3 by its analogue for the queue-size.

Theorem 2 Suppose that the non-negative and integer-valaed random variables M

and j satisfy the omni-equation

O(M)=(1- p) 0(j) + pf(M+ h) h=#i (5.10)

in which p and h are as in (5.8). Then the following composition holds

w,( M) = O(n +j) (5.11)
R

The proof is analogous to the proof of Theorem I and shall be omitted.

We are now ready to recycle (2.6), the omni-equation for the positive delay w., into an omni-

equation for n. the queue size while the server works, in our model M/G/1 with exceptional service

and exceptional arrival rate.

'-(w.) =( - p),() + ptbw. +i) (2.6) = (5. 10)

Applying the Poisson operator to each argument in (5.10) we obtain

(# w,)=l -- p(#) + pP(# w,* + #) R(5.11)

Let now q~d=size of queue left behind during a positive delay; qa=#in queue found by a
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follower: n.=#in queue when server works.

Clearly, V)(#w.)= b(qsd); ,(qd) = 9.(qa) follows, as can be shown, from the fact that

transitions "n=j - n=j+l" are as frequent as "n=j+l - n=j" in systems where all events are

single with probability one (even for G/G/1 and more general systems): and t,(n~a)= '(n.) because

the source of customers and a continuous observer see the same statistical picture in a queuing system

with a steady Poisson source, and in our model the source is steady when the server works. (Cf.

Krakowski 1973, Theorem B) Therefore

tV(#w.) = V(q*d) = 1k(q*a) = (n*) (5.12)

torn (.11) and (5.12) we obtain

(5.13)

From Theorem 2 and (5.13) it follows that

1t(n,)=b(n+ #S) (5.14)
R

We can also derive (5.14) if we apply the Poisson operator to each argument in (3.8):

(w.) = (w+) (3.8)=(5.15)
R

without the use of Theorem 2.

We have clearly

Vw(qd) =QoV)(O) +Q, (q*d) (5.16)

and since w(q*,)= 4(n*), as stated in (5.12), it follows from (5.14) and (5.16) that

,(qd) =Q0i(0) +Q. P(n+ #(5.17)

Equation (5.17) applies to the arrival and departure streams from the point of view of the customer

source. Recall that w(qd) = tV(qa). The steady observer notes that
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and from (5.14) and (5.18) he gets

u-(n)= Po v'(O)+P,g,(n+ #) (5.19)
R

the omni-equation applicable to his experience. We note that equations (5.17) and (5.1B) differ only in

their weights with which an idling or a working server is found, as it ought to be.
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Section 6: System Size and System Sojourn

At times we may be interested in the system size and the system sojourn in our model of M/G/1

modified by exceptional service and arrival rate as described above. We can easily write down omni-

equations for these processes from the results for the queue size and the delay. Thus

ii ~~,,(Q) =Qo (0) +Q., ( 1+q,) =Qo (0)+Q, t (1 +n, ) (6. 1)

where Q=system size found by a newcomer. Note that "system size round by a newcomer" and

"system size left behind by a served customer" have the same distribution (Cf. Krakowski 1974).

The system size N perceived by the continuous observer is described by the omni-equation

O(N)=PO (0)+P, (1+n*) (6.2)

The sojourn time W in the system is described by the omni-equation

U:(W) =Q 0 '(y)+Q*,(w, +x) (6.3)

The equations (6.1) and (6.2) and (6.3) are self-explaining as mixtures of idle and busy terms.

Note that when N>0 then there is one customer in the service station and n, customers in the queue:

hence the argument l+n, in (6.2). A similar argument holds for (6.1).
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Appendix: Relating #x to #i

Consider the omni-equation of the renewal process generated by the generic service time x (cf.

Krakowski 1987):

or

w.'(x)-w~(O) =Iim j1[u(r+dt) -v(r)] (A.2)

Applying the Poisson operator to each argument in (A.2) we have

Denoting #x =k and #r =#ix=h we write (A.3) as

v (k) - i (O) =Iim It-[0(h + #dt) -(h)1 (A.4)

It is clear that

g i(h+ #dt) =Pr(one Poisson event)i(h+ 1) +Pr(no Poisson event), (h) + Odt 2

=dtAV)(h+l)+(1-dt)?b(h) + Odt 2

and the right-hand side of (A.4) becomes

Up[t(h+l)- P(h)J since AR=p (A.5)

From (A.4) and (A.5) we have

[w(k)-vw(O)=p[ti.'(h+ l)-w,,(h)] (5.9) =(A. 6)
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